Unicyclic graphs possessing Kekulé structures with minimal energy

Wen-Huan Wang*
Department of Mathematics, Shanghai University, Shanghai 200444, China
E-mail: whwang@shu.edu.cn

An Chang
Department of Mathematics, Fuzhou University, Fujian 350002, China
Dong-Qiang Lu
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai 200072, China
Received 2 February 2006; revised 15 February 2006

Abstract

Unicyclic graphs possessing Kekulé structures with minimal energy are considered. Let n and l be the numbers of vertices of graph and cycle C_{l} contained in the graph, respectively; r and j positive integers. It is mathematically verified that for $n \geqslant 6$ and $l=2 r+1$ or $l=4 j+2, S_{n}^{4}$ has the minimal energy in the graphs exclusive of S_{n}^{3}, where S_{n}^{4} is a graph obtained by attaching one pendant edge to each of any two adjacent vertices of C_{4} and then by attaching $n / 2-3$ paths of length 2 to one of the two vertices; S_{n}^{3} is a graph obtained by attaching one pendant edge and $n / 2-2$ paths of length 2 to one vertex of C_{3}. In addition, we claim that for $6 \leqslant n \leqslant 12, S_{n}^{4}$ has the minimal energy among all the graphs considered while for $n \geqslant 14, S_{n}^{3}$ has the minimal energy.

KEY WORDS: unicyclic graph, perfect matching, Kekulé structure, minimal energy MSC 2000: 05C17, 05C35

1. Introduction

It is known that conjugated molecules in chemistry may be classified into two groups: Kekuléan and non-Kekuléan molecules, depending on whether or not they possess Kekulé structures, which are perfect matchings for a molecular graph corresponding to the carbon atom skeleton of a conjugated unsaturated hydrocarbon [1]. In the chemical graph theory, the extremal energy of molecular graphs systems has been a subject of interest [2-14]. In this paper, the minimal energy of the unicyclic graph with Kekule structures, i.e., unicyclic graphs with

[^0]perfect matchings, will be investigated. The set of these graphs is denoted by \mathcal{K}_{n}^{l}. For any graph in \mathcal{K}_{n}^{l}, n is the number of vertices of the graph and l the number of vertices of the cycle contained in the graph. We denote the cycle by C_{l}.

The heats of atomization of conjugated hydrocarbons can be determined by the total π-electron energy. The total energy of all π-electrons in conjugated hydrocarbons, within the framework of HMO approximation [15, 16], can be given by

$$
\begin{equation*}
E(G)=\sum_{i=1}^{n}\left|\lambda_{i}\right|, \tag{1}
\end{equation*}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of the corresponding graph $G . E(G)$ can also be expressed as the Coulson integral formula [6]

$$
\begin{equation*}
E(G)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \frac{1}{x^{2}} \ln \left[\left(\sum_{j=0}^{[n / 2]} b_{2 j} x^{2 j}\right)^{2}+\left(\sum_{j=0}^{[n / 2]} b_{2 j+1} x^{2 j+1}\right)^{2}\right] \mathrm{d} x \tag{2}
\end{equation*}
$$

where $b_{i}(G)=\left|a_{i}(G)\right|,(i=0,1,2, \ldots, n)$, and $a_{0}, a_{1}, \ldots, a_{n}$ are the coefficients of the characteristic polynomial of G. The property of the Coulson integral formula was discussed by Gutman and Mateljevic [17]. It can be seen from equation (2) that $E(G)$ is a strictly monotonously increasing function of $b_{i}(G)$. Consequently, if

$$
\begin{equation*}
b_{i}\left(G_{1}\right) \geqslant b_{i}\left(G_{2}\right) \tag{3}
\end{equation*}
$$

holds for all $i \geqslant 0$ where G_{1} and G_{2} are unicyclic graphs, then

$$
\begin{equation*}
E\left(G_{1}\right) \geqslant E\left(G_{2}\right) \tag{4}
\end{equation*}
$$

and the equality in formula (4) is attained only if relation (3) is an equality for all $i \geqslant 0$ [6].

2. Preliminaries

For any graph G, the number of the Kekule patterns is simply called the Kekulé number, denoted by $K(G)$, i.e., the number of perfect matching. Thus, we have property 1 .

Property 1. Let $G \in \mathcal{K}_{n}^{l}$. If at least one vertex v of C_{l} is attached by a forest of odd order, then $K(G)=1$. Otherwise, $K(G)=2$.

Proof. Case (i). At least one vertex v of C_{l} is attached by a forest of odd order.
Because the forest is of odd order and every vertex of G is saturated, v and one vertex of the forest are matched. The rest of the vertices at C_{l} is clockwise
considered. Denote the vertex adjacent to v by u. If u is also attached by a forest of odd order, similarly, u and one vertex of the forest are matched. If u is attached either by a forest of even order or by no forest, u and its next adjacent vertex at C_{l} are matched. The analysis on the rest of the vertices at C_{l} is the same as that for u. Thus, it can be concluded that every vertex of C_{l} are matched with a fixed vertex. Because the perfect matching of tree is unique, we have $K(G)=1$.

Case (ii). Each vertex of C_{l} is attached either by a forest of even order or by no forest.

Since the perfect matching of the forest is unique, each vertex of C_{l} should be matched with another vertex at C_{l}. Thus, the number of the vertices of C_{l} is even and $K\left(C_{l}\right)=2$. We have $K(G)=2$. Thus, property 1 has been proved.

Let $m(G, k)$ be the number of k-matchings in G. It is clear that $m(G, 1)=$ n. We define $m(G, 0)=1$. Let $Q(G)=L(G)-M(G)$, where $L(G)$ is the edge set of G and $M(G)$ the perfect matching of G. It is clear that $|M(G)|=|Q(G)|=$ $n / 2$, where $|M(G)|$ and $|Q(G)|$ are the numbers of edges in $M(G)$ and $Q(G)$, respectively. Let \widehat{G} be the graph induced by $Q(G)$, that is, $\widehat{G}=G-M(G)-S_{0}$, where S_{0} is the set of singletons in $G-M(G)$. We call \widehat{G} the capped graph of G and G the original graph of \widehat{G}. Each k-matching Ω of G can be partitioned into two parts: $\Omega=\Phi \cup \Psi$, where Φ is a matching in \widehat{G} and $\Psi \subseteq M(G)$. On the other hand, any i-matching Φ of \widehat{G} and $k-i$ edges Ψ of $M(G)$ that are not adjacent to Φ form a k-matching Ω of G with partition $\Omega=\Phi \cup \Psi$. Thus, we have

$$
\begin{equation*}
m(G, k)=\sum_{i=0}^{n / 2} m(\widehat{G}, i) \cdot\binom{n / 2-j}{k-i} \tag{5}
\end{equation*}
$$

where j is the number of edges in $M(G)$, which are adjacent to i-matching Φ [4].

To formulate the main results of the present paper, definitions of certain types of graphs and necessary lemmas are introduced.

Let S_{n}^{4} is a graph obtained by attaching one pendant edge to each of any two adjacent vertices of C_{4} and then by attaching $n / 2-3$ paths of length 2 to one of the two vertices. For instance, S_{10}^{4} and \widehat{S}_{10}^{4} are shown in figure 1.

Let R_{n}^{3} is a graph obtained by attaching one pendant edge to every vertex of C_{3} and then by attaching $n / 2-3$ paths of length 2 to a vertex of C_{3}. For instance, R_{10}^{3} and \widehat{R}_{10}^{3} are shown in figure 2.

Let S_{n}^{3} is a graph obtained by attaching one pendant edge and $n / 2-2$ paths of length 2 to one vertex of C_{3}. For instance, S_{10}^{3} and \widehat{S}_{10}^{3} are shown in figure 3 .

(b)

Figure 1. (a) S_{10}^{4}; (b) \widehat{S}_{10}^{4}.

(b)

Figure 2. (a) R_{10}^{3}; (b) \widehat{R}_{10}^{3}.

Figure 3. (a) S_{8}^{3}; (b) \widehat{S}_{8}^{3}.

Lemma 1 [16]. If u and v are adjacent vertices of G and e is the edge connecting u and v, then for $k \geqslant 1, m(G, k)=m(G-e, k)+m(G-u-v, k-1)$.

Lemma 2 [6]. Let G be a unicyclic graph with cycle C_{l}. Then

$$
b_{2 k}(G)=m(G, k)+2(-1)^{r+1} m\left(G-C_{l}, k-r\right)
$$

and $b_{2 k+1}(G)=0$ for $l=2 r$ while $b_{2 k}(G)=m(G, k)$ and

$$
b_{2 k+1}(G)= \begin{cases}0, & 2 k+1<l \\ 2 m\left(G-C_{l}, k-r\right), & 2 k+1 \geqslant l\end{cases}
$$

for $l=2 r+1$, where $k=0,1, \ldots, n / 2$.

3. Main results

Next, some properties of \widehat{G} are given. \widehat{G} can be classified into three categories: (i) connected unicyclic graphs, (ii) trees, and (iii) unconnected graphs whose components are trees and C_{l} or trees only. If \widehat{G} is a connected unicyclic graph, every vertex of \widehat{G} is incident with a distinct edge of $M(G)$ since it is saturated. Obviously, we have property 2 as follows.

Property 2. If \widehat{G} is a connected unicyclic graph, any 2-matchings of \widehat{G} are adjacent to four edges of $M(G)$. Otherwise, any 2-matchings of \widehat{G} are adjacent to at most four edges of $M(G)$.

Lemma 3. Let $G \in \mathcal{K}_{n}^{l} \backslash\left\{S_{n}^{3}\right\}$ and $n \geqslant 8$, then $m(\widehat{G}, 2) \geqslant n / 2-3$.
Proof. It is clear that $m\left(\widehat{S}_{n}^{3}, 2\right)=0 . \widehat{G}$ is classified into three cases.
Case (i) \widehat{G} is a connected unicyclic graph.
When $n \geqslant 8$ and $G=R_{n}^{3}$, it is obvious that $m\left(\widehat{R}_{n}^{3}, 2\right)=n / 2-3$. Next we consider $G \neq R_{n}^{3}$.

From Lemma 1, we have $m(\widehat{G}, 2)=m(\widehat{G}-e, 2)+m(\widehat{G}-u-v, 1)$. We can choose an edge from $Q(G)$ at C_{l} in such a way that the edge, denoted by $e=u v$, satisfies $m(\widehat{G}-u-v, 1) \geqslant 1$ and $\widehat{G}-e \neq K_{1, n / 2-1}$, where $K_{1, n / 2-1}$ is a star graph. Obviously, $\widehat{G}-e$ is a tree with $n / 2$ vertices. Therefore, $\widehat{G}-e$ has two non-empty trees, denoted by T_{1} with a edges and T_{2} with $n / 2-a-2$ edges, which are connected by an edge of $\widehat{G}-e$. The edges in T_{1} are disjoint with those in T_{2}. $\widehat{G}-e$ has at least $n / 2-32$-matchings since each edge in one tree along with another in the other tree forms a 2 -matching. Thus, we obtain $m(\widehat{G}, 2) \geqslant(n / 2-3)+1=n / 2-2$.

Case (ii) \widehat{G} is a tree.
When $n \geqslant 8$ and $G \neq S_{n}^{3}$, we have $\widehat{G} \neq K_{1, n / 2}$. Furthermore, \widehat{G} is obviously a tree with $n / 2+1$ vertices. Therefore, \widehat{G} has two non-empty trees, denoted by
T_{3} with b edges and T_{4} with $n / 2-b-1$ edges, which are connected by an edge of \widehat{G}. The edges in T_{3} are disjoint with those in T_{4}. \widehat{G} has at least $n / 2-2$ matchings since each edge in one tree along with another in the other tree forms a 2 -matching. Thus, we have $m(\widehat{G}, 2) \geqslant n / 2-2$.

Case (iii) \widehat{G} is a unconnected graph whose components are trees and C_{l} or trees only.

If \widehat{G} is composed of trees and C_{l}, we might concatenate them together into a connected unicyclic graph, denoted by \widehat{G}_{1}. It is obvious that $m(\widehat{G}, 2)>$ $m\left(\widehat{G}_{1}, 2\right)$. By the approach similar to Case (i), we have $m\left(\widehat{G}_{1}, 2\right) \geqslant n / 2-3$. Therefore, $m(\widehat{G}, 2)>n / 2-3$.

If \widehat{G} is composed of trees only, we might concatenate them together into a tree, denoted by \widehat{G}_{2}, in such a way that $\widehat{G}_{2} \neq \widehat{S}_{n}^{3}$. It is obvious that $m(\widehat{G}, 2)>$ $m\left(\widehat{G}_{2}, 2\right)$. By the approach similar to Case (ii), we have $m\left(\widehat{G}_{2}, 2\right) \geqslant n / 2-2$. Therefore, $m(\widehat{G}, 2)>n / 2-2$.

Lemma 3 is readily attained by combining Cases (i)-(iii).
From lemma 3, we have theorem 1 as follows.

Theorem 1. Let $G \in \mathcal{K}_{n}^{l} \backslash\left\{S_{n}^{3}\right\}$ and $n \geqslant 6$. When $l=2 r+1$ or $l=4 j+2(r$ and j are non-negative integers), $E(G)>E\left(S_{n}^{4}\right)$.

Proof. When $n=6, G \neq S_{n}^{3}$ and $l=3,5,6$, by a straightforward calculation on $E(G)$, we verify that S_{6}^{4} has the minimal energy.

It is noted that $m\left(\widehat{S}_{n}^{4}, 2\right)=n / 2-2$. Since one 2 -matching of \widehat{S}_{n}^{4} are adjacent to three edges of $M\left(S_{n}^{4}\right)$ and the other 2-matchings of \widehat{S}_{n}^{4} to four edges of $M\left(S_{n}^{4}\right)$, and $m\left(\widehat{S}_{n}^{4}, i\right)=0$ when $3 \leqslant i \leqslant n / 2$, we have

$$
\begin{aligned}
m\left(S_{n}^{4}, k\right) & =\sum_{i=0}^{n / 2} m\left(\widehat{S}_{n}^{4}, i\right) \cdot\binom{\frac{n}{2}-j}{k-i} \\
& =\binom{\frac{n}{2}}{k}+\frac{n}{2} \cdot\binom{\frac{n}{2}-2}{k-1}+\binom{\frac{n}{2}-3}{k-2}+\left(\frac{n}{2}-3\right) \cdot\binom{\frac{n}{2}-4}{k-2}
\end{aligned}
$$

From lemma 2 and the fact that $S_{n}^{4}-C_{4}$ is composed of $n / 2-3$ independent edges and two isolated vertices, we obtain

$$
\begin{align*}
b_{2 k}\left(S_{n}^{4}\right) & =m\left(S_{n}^{4}, k\right)-2 m\left(S_{n}^{4}-C_{4}, k-2\right) \\
& =m\left(S_{n}^{4}, k\right)-2 \cdot\binom{\frac{n}{2}-3}{k-2} \\
& =\binom{n / 2}{k}+\frac{n}{2} \cdot\binom{n / 2-2}{k-1}-\binom{\frac{n}{2}-3}{k-2}+\left(\frac{n}{2}-3\right) \cdot\binom{\frac{n}{2}-4}{k-2} . \tag{6}
\end{align*}
$$

When $n \geqslant 8$ and $G \neq S_{n}^{3}, G$ is classified into two cases as follows.

Case (i) $l=2 r+1$.
From lemma 2, we have

$$
\begin{aligned}
b_{2 k}(G) & =m(G, k) \\
& =\binom{n / 2}{k}+\frac{n}{2} \cdot\binom{\frac{n}{2}-2}{k-1}+m(\widehat{G}, 2) \cdot\binom{\frac{n}{2}-j}{k-2}+\sum_{i=3}^{n / 2} m(\widehat{G}, i) \cdot\binom{\frac{n}{2}-j}{k-i} .
\end{aligned}
$$

From lemma 3 and property 2, we have

$$
b_{2 k}(G) \geqslant\binom{\frac{n}{2}}{k}+\frac{n}{2} \cdot\binom{n / 2-2}{k-1}+\left(\begin{array}{l}
n \tag{7}\\
2
\end{array}-3\right) \cdot\binom{\frac{n}{2}-4}{k-2} .
$$

Formula (7) subtracted from equation (6) gives

$$
\begin{equation*}
b_{2 k}(G)-b_{2 k}\left(S_{n}^{4}\right) \geqslant\binom{\frac{n}{2}-3}{k-2} \geqslant 0 \tag{8}
\end{equation*}
$$

The second equality in formula (8) holds if and only if $k=n / 2$. From formula (8), we have

$$
\begin{equation*}
b_{2 k}(G) \geqslant b_{2 k}\left(S_{n}^{4}\right) . \tag{9}
\end{equation*}
$$

It is clear that the equality in formula (9) does not hold for all k.
From lemma 2, we have $b_{2 k+1}\left(S_{n}^{4}\right)=0$ and $b_{2 k+1}(G)=2 m\left(G-C_{l}, k-r\right)$. We get

$$
\begin{equation*}
b_{2 k+1}(G) \geqslant b_{2 k+1}\left(S_{n}^{4}\right) \tag{10}
\end{equation*}
$$

The equality in formula (10) does not hold for all k. For example, $b_{2 r+1}(G)=2$.
From formulae (9) and (10), we have $E(G)>E\left(S_{n}^{4}\right)$ when $l=2 r+1$.
Case (ii) $l=4 j+2$ and $r=2 j+1$.
From lemma 2, we have $b_{2 k}(G)=m(G, k)+2 m\left(G-C_{l}, k-r\right)$. By the approach similar to Case (i), we have

$$
\begin{equation*}
b_{2 k}(G) \geqslant b_{2 k}\left(S_{n}^{4}\right) \tag{11}
\end{equation*}
$$

The equality in formula (11) does not hold for all k.
From lemma 2, we have

$$
\begin{equation*}
b_{2 k+1}(G)=b_{2 k+1}\left(S_{n}^{4}\right)=0 \tag{12}
\end{equation*}
$$

From formulae (11) and (12) we have $E(G)>E\left(S_{n}^{4}\right)$ when $l=4 j+2$.
From Cases (i) and (ii), theorem 1 has been proved.

3.1. Beyond theorem 1

By the method for calculating the characteristic polynomials [15], we obtain

$$
\begin{gathered}
\phi\left(S_{n}^{3}\right)=\left(\lambda^{2}-1\right)^{n / 2-2}\left[\lambda^{4}-(2+n / 2) \lambda^{2}-2 \lambda+1\right], \\
\phi\left(S_{n}^{4}\right)=\left(\lambda^{2}-1\right)^{n / 2-4}\left[\lambda^{8}-(4+n / 2) \lambda^{6}+(2+3 n / 2) \lambda^{4}-(3+n / 2) \lambda^{2}+1\right] .
\end{gathered}
$$

For S_{n}^{3}, some absolutes of the odd coefficients, $b_{2 k+1}$, of the characteristic polynomials of S_{n}^{3} are non-zero. Thus, formulae (3) and (4) can not be used to compare the energies of S_{n}^{3} and S_{n}^{4}. The sum of absolutes of eigenvalues of $\phi\left(S_{n}^{3}\right)$ can exactly be obtained as an algebraic expression, so is that of $\phi\left(S_{n}^{4}\right)$. However, it is extremely difficult to compare the algebraic expressions obtained so that the direct comparison between $E\left(S_{n}^{3}\right)$ and $E\left(S_{n}^{4}\right)$ remains a formidable mathematical task. Numerical calculations clearly indicate that for even $n, 6 \leqslant n \leqslant 12$, the energy of S_{n}^{3} is greater than that of S_{n}^{4}. However, when $14 \leqslant n \leqslant 40$, the energy of S_{n}^{3} is smaller than that of S_{n}^{4}. This is inferred by the data shown in table 1 , where $\Delta_{n}=E\left(S_{n}^{4}\right)-E\left(S_{n}^{3}\right)$. It should be noted that Δ_{n} increases monotonically as n increases. Therefore, it is plausible to expect that $E\left(S_{n}^{3}\right)<E\left(S_{n}^{4}\right)$ for $n \geqslant 14$. Furthermore, the graphical representations for $\Delta_{n}=E\left(S_{n}^{4}\right)-E\left(S_{n}^{3}\right)$ with large n are shown in figures 4 and 5. The numerical and graphical evidences are sufficiently convincing to allow the formulation of the following improvement of theorem 1.

Assertion Let $G \in \mathcal{K}_{n}^{l}$. When $l=2 r+1$ or $l=4 j+2(r$ and j are non-negative integers), $E(G)>E\left(S_{n}^{4}\right)$ for $6 \leqslant n \leqslant 12$ while $E(G)>E\left(S_{n}^{3}\right)$ for $n \geqslant 14$.

A rigorous mathematical proof of the above assertion remains a task for the future.

Table 1

n	Δ_{n}	n	Δ_{n}	n	Δ_{n}
6	-0.1347390	18	0.0757261	30	0.1616500
8	-0.0795080	20	0.0945098	32	0.1715100
10	-0.0358839	22	0.1110570	34	0.1805550
12	-0.0003988	24	0.1257690	36	0.1888890
14	0.0291360	26	0.1389520	38	0.1965970
16	0.0541752	28	0.1508490	40	0.2037540

Figure 4. Δ_{n} for $6 \leqslant n \leqslant 10^{2}$.

Figure 5. Δ_{n} for $10^{2} \leqslant n \leqslant 10^{5}$.

Acknowledgments

The work was partially supported by the National Natural Science Foundation of China under Grant Numbers 10571117 and 10371019.

References

[1] H. Hosoya, Introduction to graph theory, in: Graph Theoretical Approaches to Chemical Reactivity, eds. D. Bonchev and O. Mekenyan (Kluwer Academic Publishers, Dordrecht, 1994), p. 30.
[2] I. Gutman, Theoret. Chim. Acta 45 (1977) 79-87.
[3] H. Li, J. Math. Chem. 25 (1999) 145-169.
[4] F. Zhang and H. Li, Discrete Appl. Math. 92 (1999) 71-84.
[5] I. Gutman and Y.P. Hou, MATCH-Commun. Math. Comput. Chem. 43 (2001) 17-28.
[6] Y.P. Hou, J. Math. Chem. 29 (2001) 163-168.
[7] F.J. Zhang, Z.M. Li and L. Wang, Chem. Phys. Lett. 337 (2001) 125-130.
[8] F.J. Zhang, Z.M. Li and L. Wang, Chem. Phys. Lett. 337 (2001) 131-137.
[9] Y.P. Hou, Linear Multilinear Algebra 49 (2002) 347-354.
[10] J. Rada, Discrete Appl. Math. 145 (2005) 437-443.
[11] J.B. Zhang and B. Zhou, J. Math. Chem. 37 (2005) 423-431.
[12] W.G. Yan and L.Z. Ye, Appl. Math. Lett. 18 (2005) 1046-1052.
[13] W.H. Wang, A. Chang, L.Z. Zhang and D.Q. Lu, J. Math. Chem. 39 (2006) 231-241.
[14] B. Zhou and F. Li, J. Math. Chem. 39 (2006) 465-474.
[15] D.M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs-Theory and Application (Academic Press, New York, 1980).
[16] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry (Springer-Verlag, Berlin, 1986), p. 37.
[17] I. Gutman and M. Mateljevic, J. Math. Chem. 39 (2006) 259-266.

[^0]: *Corresponding author.

