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Unicyclic graphs possessing Kekulé structures with minimal energy are considered.
Let n and l be the numbers of vertices of graph and cycle Cl contained in the graph,
respectively; r and j positive integers. It is mathematically verified that for n � 6 and
l = 2r +1 or l = 4 j +2, S4

n has the minimal energy in the graphs exclusive of S3
n , where

S4
n is a graph obtained by attaching one pendant edge to each of any two adjacent ver-

tices of C4 and then by attaching n/2 − 3 paths of length 2 to one of the two vertices;
S3

n is a graph obtained by attaching one pendant edge and n/2 − 2 paths of length 2 to
one vertex of C3. In addition, we claim that for 6 � n � 12, S4

n has the minimal energy
among all the graphs considered while for n � 14, S3

n has the minimal energy.
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1. Introduction

It is known that conjugated molecules in chemistry may be classified into
two groups: Kekuléan and non-Kekuléan molecules, depending on whether or
not they possess Kekulé structures, which are perfect matchings for a molecular
graph corresponding to the carbon atom skeleton of a conjugated unsaturated
hydrocarbon [1]. In the chemical graph theory, the extremal energy of molecular
graphs systems has been a subject of interest [2–14]. In this paper, the minimal
energy of the unicyclic graph with Kekulé structures, i.e., unicyclic graphs with
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perfect matchings, will be investigated. The set of these graphs is denoted by Kl
n.

For any graph in Kl
n, n is the number of vertices of the graph and l the number

of vertices of the cycle contained in the graph. We denote the cycle by Cl .
The heats of atomization of conjugated hydrocarbons can be determined

by the total π -electron energy. The total energy of all π -electrons in conjugated
hydrocarbons, within the framework of HMO approximation [15, 16], can be
given by

E(G) =
n∑

i=1

|λi |, (1)

where λ1, . . . , λn are the eigenvalues of the corresponding graph G. E(G) can
also be expressed as the Coulson integral formula [6]

E(G) = 1
2π
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where bi (G) = |ai (G)|, (i = 0, 1, 2, . . . , n), and a0, a1, . . . , an are the coefficients
of the characteristic polynomial of G. The property of the Coulson integral formula
was discussed by Gutman and Mateljevic [17]. It can be seen from equation (2) that
E(G) is a strictly monotonously increasing function of bi (G). Consequently, if

bi (G1) � bi (G2) (3)

holds for all i � 0 where G1 and G2 are unicyclic graphs, then

E(G1) � E(G2) (4)

and the equality in formula (4) is attained only if relation (3) is an equality for
all i � 0 [6].

2. Preliminaries

For any graph G, the number of the Kekulé patterns is simply called the
Kekulé number, denoted by K (G), i.e., the number of perfect matching. Thus,
we have property 1.

Property 1. Let G ∈ Kl
n. If at least one vertex v of Cl is attached by a forest of

odd order, then K (G) = 1. Otherwise, K (G) = 2.

Proof. Case (i). At least one vertex v of Cl is attached by a forest of odd order.
Because the forest is of odd order and every vertex of G is saturated, v and

one vertex of the forest are matched. The rest of the vertices at Cl is clockwise



W.-H. Wang et al. / Unicyclic graphs possessing Kekulé structures 313

considered. Denote the vertex adjacent to v by u. If u is also attached by a for-
est of odd order, similarly, u and one vertex of the forest are matched. If u is
attached either by a forest of even order or by no forest, u and its next adja-
cent vertex at Cl are matched. The analysis on the rest of the vertices at Cl is
the same as that for u. Thus, it can be concluded that every vertex of Cl are
matched with a fixed vertex. Because the perfect matching of tree is unique, we
have K (G) = 1.

Case (ii). Each vertex of Cl is attached either by a forest of even order or by no
forest.

Since the perfect matching of the forest is unique, each vertex of Cl should
be matched with another vertex at Cl . Thus, the number of the vertices of Cl is
even and K (Cl) = 2. We have K (G) = 2. Thus, property 1 has been proved.

Let m(G, k) be the number of k-matchings in G. It is clear that m(G, 1) =
n. We define m(G, 0) = 1. Let Q(G) = L(G)− M(G), where L(G) is the edge set
of G and M(G) the perfect matching of G. It is clear that |M(G)| = |Q(G)| =
n/2, where |M(G)| and |Q(G)| are the numbers of edges in M(G) and Q(G),
respectively. Let Ĝ be the graph induced by Q(G), that is, Ĝ = G − M(G) − S0,
where S0 is the set of singletons in G − M(G). We call Ĝ the capped graph of
G and G the original graph of Ĝ. Each k-matching � of G can be partitioned
into two parts: � = � ∪ �, where � is a matching in Ĝ and � ⊆ M(G). On
the other hand, any i-matching � of Ĝ and k − i edges � of M(G) that are not
adjacent to � form a k-matching � of G with partition � = � ∪ �. Thus, we
have

m(G, k) =
n/2∑

i=0

m(Ĝ, i) ·
(

n/2 − j
k − i

)
, (5)

where j is the number of edges in M(G), which are adjacent to i-matching �

[4].
To formulate the main results of the present paper, definitions of certain

types of graphs and necessary lemmas are introduced.
Let S4

n is a graph obtained by attaching one pendant edge to each of any
two adjacent vertices of C4 and then by attaching n/2 − 3 paths of length 2 to
one of the two vertices. For instance, S4

10 and Ŝ4
10 are shown in figure 1.

Let R3
n is a graph obtained by attaching one pendant edge to every vertex

of C3 and then by attaching n/2 − 3 paths of length 2 to a vertex of C3. For
instance, R3

10 and R̂3
10 are shown in figure 2.

Let S3
n is a graph obtained by attaching one pendant edge and n/2−2 paths

of length 2 to one vertex of C3. For instance, S3
10 and Ŝ3

10 are shown in figure 3.
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Figure 1. (a) S4
10; (b) Ŝ4

10.

Figure 2. (a) R3
10; (b) R̂3

10.
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Figure 3. (a) S3
8 ; (b) Ŝ3

8 .



W.-H. Wang et al. / Unicyclic graphs possessing Kekulé structures 315

Lemma 1 [16]. If u and v are adjacent vertices of G and e is the edge connecting
u and v, then for k � 1, m(G, k) = m(G − e, k) + m(G − u − v, k − 1).

Lemma 2 [6]. Let G be a unicyclic graph with cycle Cl . Then

b2k(G) = m(G, k) + 2(−1)r+1m(G − Cl, k − r)

and b2k+1(G) = 0 for l = 2r while b2k(G) = m(G, k) and

b2k+1(G) =
{

0, 2k + 1 < l,
2m(G − Cl, k − r), 2k + 1 � l

for l = 2r + 1, where k = 0, 1, . . . , n/2.

3. Main results

Next, some properties of Ĝ are given. Ĝ can be classified into three catego-
ries: (i) connected unicyclic graphs, (ii) trees, and (iii) unconnected graphs whose
components are trees and Cl or trees only. If Ĝ is a connected unicyclic graph,
every vertex of Ĝ is incident with a distinct edge of M(G) since it is saturated.
Obviously, we have property 2 as follows.

Property 2. If Ĝ is a connected unicyclic graph, any 2-matchings of Ĝ are adja-
cent to four edges of M(G). Otherwise, any 2-matchings of Ĝ are adjacent to at
most four edges of M(G).

Lemma 3. Let G ∈ Kl
n \{S3

n} and n � 8, then m(Ĝ, 2) � n/2 − 3.

Proof. It is clear that m(Ŝ3
n , 2) = 0. Ĝ is classified into three cases.

Case (i) Ĝ is a connected unicyclic graph.
When n�8 and G = R3

n , it is obvious that m(R̂3
n, 2) = n/2 − 3. Next we

consider G �= R3
n .

From Lemma 1, we have m(Ĝ, 2) = m(Ĝ − e, 2) + m(Ĝ − u − v, 1). We
can choose an edge from Q(G) at Cl in such a way that the edge, denoted by
e = uv, satisfies m(Ĝ − u − v, 1) � 1 and Ĝ − e �= K1,n/2−1, where K1,n/2−1
is a star graph. Obviously, Ĝ − e is a tree with n/2 vertices. Therefore, Ĝ − e
has two non-empty trees, denoted by T1 with a edges and T2 with n/2 − a − 2
edges, which are connected by an edge of Ĝ − e. The edges in T1 are disjoint
with those in T2. Ĝ − e has at least n/2 − 3 2-matchings since each edge in one
tree along with another in the other tree forms a 2-matching. Thus, we obtain
m(Ĝ, 2) � (n/2 − 3) + 1 = n/2 − 2.

Case (ii) Ĝ is a tree.
When n � 8 and G �= S3

n , we have Ĝ �= K1,n/2. Furthermore, Ĝ is obviously
a tree with n/2 + 1 vertices. Therefore, Ĝ has two non-empty trees, denoted by
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T3 with b edges and T4 with n/2 − b − 1 edges, which are connected by an edge
of Ĝ. The edges in T3 are disjoint with those in T4. Ĝ has at least n/2 − 2 2-
matchings since each edge in one tree along with another in the other tree forms
a 2-matching. Thus, we have m(Ĝ, 2) � n/2 − 2.

Case (iii) Ĝ is a unconnected graph whose components are trees and Cl or
trees only.

If Ĝ is composed of trees and Cl , we might concatenate them together
into a connected unicyclic graph, denoted by Ĝ1. It is obvious that m(Ĝ, 2) >

m(Ĝ1, 2). By the approach similar to Case (i), we have m(Ĝ1, 2) � n/2−3. There-
fore, m(Ĝ, 2) > n/2 − 3.

If Ĝ is composed of trees only, we might concatenate them together into a
tree, denoted by Ĝ2, in such a way that Ĝ2 �= Ŝ3

n . It is obvious that m(Ĝ, 2) >

m(Ĝ2, 2). By the approach similar to Case (ii), we have m(Ĝ2, 2) � n/2 − 2.
Therefore, m(Ĝ, 2) > n/2 − 2.

Lemma 3 is readily attained by combining Cases (i)–(iii).
From lemma 3, we have theorem 1 as follows.

Theorem 1. Let G ∈ Kl
n \{S3

n} and n � 6. When l = 2r + 1 or l = 4 j + 2 (r and
j are non-negative integers), E(G) > E(S4

n).

Proof. When n = 6, G �= S3
n and l = 3, 5, 6, by a straightforward calculation on

E(G), we verify that S4
6 has the minimal energy.

It is noted that m(Ŝ4
n , 2) = n/2 − 2. Since one 2-matching of Ŝ4

n are adja-
cent to three edges of M(S4

n) and the other 2-matchings of Ŝ4
n to four edges of

M(S4
n), and m(Ŝ4

n , i) = 0 when 3 � i � n/2, we have

m(S4
n , k) =

n/2∑

i=0

m(Ŝ4
n , i) ·

( n
2 − j
k − i

)

=
( n

2
k

)
+ n

2
·
( n

2 − 2
k − 1

)
+

( n
2 − 3
k − 2

)
+

(n

2
− 3

)
·
( n

2 − 4
k − 2

)
.

From lemma 2 and the fact that S4
n −C4 is composed of n/2−3 independent

edges and two isolated vertices, we obtain

b2k(S4
n) = m(S4

n , k) − 2m(S4
n − C4, k − 2)

= m(S4
n , k) − 2 ·

( n
2 − 3
k − 2

)

=
(

n/2
k

)
+ n

2
·
(

n/2 − 2
k − 1

)
−

( n
2 − 3
k − 2

)
+

(n

2
− 3

)
·
( n

2 − 4
k − 2

)
. (6)

When n � 8 and G �= S3
n , G is classified into two cases as follows.
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Case (i) l = 2r + 1.
From lemma 2, we have

b2k(G) = m(G, k)

=
(

n/2
k

)
+ n

2
·
( n

2 − 2
k − 1

)
+ m(Ĝ, 2) ·

( n
2 − j
k − 2

)
+

n/2∑

i=3

m(Ĝ, i) ·
( n

2 − j
k − i

)
.

From lemma 3 and property 2, we have

b2k(G) �
( n

2
k

)
+ n

2
·
(

n/2 − 2
k − 1

)
+

(n

2
− 3

)
·
( n

2 − 4
k − 2

)
. (7)

Formula (7) subtracted from equation (6) gives

b2k(G) − b2k(S4
n) �

( n
2 − 3
k − 2

)
� 0. (8)

The second equality in formula (8) holds if and only if k = n/2. From for-
mula (8), we have

b2k(G) � b2k(S4
n). (9)

It is clear that the equality in formula (9) does not hold for all k.
From lemma 2, we have b2k+1(S4

n) = 0 and b2k+1(G) = 2m(G − Cl , k − r).
We get

b2k+1(G) � b2k+1(S4
n). (10)

The equality in formula (10) does not hold for all k. For example, b2r+1(G) = 2.
From formulae (9) and (10), we have E(G) > E(S4

n) when l = 2r + 1.
Case (ii) l = 4 j + 2 and r = 2 j + 1.
From lemma 2, we have b2k(G) = m(G, k) + 2m(G − Cl, k − r). By the

approach similar to Case (i), we have

b2k(G) � b2k(S4
n). (11)

The equality in formula (11) does not hold for all k.
From lemma 2, we have

b2k+1(G) = b2k+1(S4
n) = 0. (12)

From formulae (11) and (12) we have E(G)>E(S4
n) when l = 4 j + 2.

From Cases (i) and (ii), theorem 1 has been proved.



318 W.-H. Wang et al. / Unicyclic graphs possessing Kekulé structures

3.1. Beyond theorem 1

By the method for calculating the characteristic polynomials [15], we obtain

φ(S3
n) = (λ2 − 1)n/2−2[λ4 − (2 + n/2)λ2 − 2λ + 1],

φ(S4
n) = (λ2 − 1)n/2−4[λ8 − (4 + n/2)λ6 + (2 + 3n/2)λ4 − (3 + n/2)λ2 + 1] .

For S3
n , some absolutes of the odd coefficients, b2k+1, of the characteristic poly-

nomials of S3
n are non-zero. Thus, formulae (3) and (4) can not be used to com-

pare the energies of S3
n and S4

n . The sum of absolutes of eigenvalues of φ(S3
n) can

exactly be obtained as an algebraic expression, so is that of φ(S4
n). However, it

is extremely difficult to compare the algebraic expressions obtained so that the
direct comparison between E(S3

n) and E(S4
n) remains a formidable mathematical

task. Numerical calculations clearly indicate that for even n, 6 � n � 12, the
energy of S3

n is greater than that of S4
n . However, when 14 � n � 40, the energy

of S3
n is smaller than that of S4

n . This is inferred by the data shown in table 1,
where �n = E(S4

n) − E(S3
n). It should be noted that �n increases monotonically

as n increases. Therefore, it is plausible to expect that E(S3
n) < E(S4

n) for n � 14.
Furthermore, the graphical representations for �n = E(S4

n) − E(S3
n) with large

n are shown in figures 4 and 5. The numerical and graphical evidences are suffi-
ciently convincing to allow the formulation of the following improvement of the-
orem 1.

Assertion Let G ∈ Kl
n. When l = 2r +1 or l = 4 j +2 (r and j are non-neg-

ative integers), E(G) > E(S4
n) for 6 � n � 12 while E(G) > E(S3

n) for n � 14.
A rigorous mathematical proof of the above assertion remains a task for the

future.

Table 1

n �n n �n n �n

6 −0.1347390 18 0.0757261 30 0.1616500
8 −0.0795080 20 0.0945098 32 0.1715100

10 −0.0358839 22 0.1110570 34 0.1805550
12 −0.0003988 24 0.1257690 36 0.1888890
14 0.0291360 26 0.1389520 38 0.1965970
16 0.0541752 28 0.1508490 40 0.2037540
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Figure 4. �n for 6 � n � 102.

Figure 5. �n for 102 � n � 105.
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